1,简述心衰早期机体有哪些代偿机制

从心功能不全的早期代偿到晚期的心力衰竭,是机体从完全代偿、不完全代偿到失代偿的连续的动态发展过程。就急性心力衰竭患者而言,由于机体的代偿反应不能及时动员,患者常在短时间内即可表现出严重的心力衰竭状态。反之,慢性心力衰竭发生时,机体可通过心脏代偿和心外代偿使这个过程的持续时间长达数年甚至更久,以致患者在相当长的时间内维持相对正常的生命活动。这表明,通过代偿,心输出量尚可满足机体的代谢需要,患者未表现出心力衰竭的表征,此为完全代偿(complete compensation);若心输出量仅能满足机体在静息状态下的代谢需要,患者有轻度的心力衰竭表现,称为不完全代偿(incomplete compensation);严重时,心输出量甚至不能满足机体在静息状态下的代谢需要,患者有明显的心力衰竭症状和体证,此为失代偿(decompensation),是心功能不全的最后阶段。  代偿反应是机体在心力衰竭发生时防止 CO 进一步减少的必要措施,且代偿反应的强度与心力衰竭是否发生、发生速度以及严重程度密切相关。如 CO 尚可满足机体的代谢需要,患者未出现心力衰竭的表现,此为完全代偿( complete compensation ); 若心输出量仅能满足机体在静息状态下的代谢需要,患者有轻度心力衰竭表现,称为不完全代偿 ( incomplete compensation ) ; 严重时, CO 甚至不能满足机体在静息状态下的代谢需要,患者有明显心力衰竭的症状和体征,此为失代偿( decompensation ) 。  一、心脏本身的代偿  (一)、心率加快  这是一种见效迅速的代偿。由于心输出量=每搏输出量 × 心率,所以在一定的范围内,在每搏输出量( stroke volume )不变的情况下,心率( heart rate )的增快可提高 CO ,并可通过提高舒张压,促进冠脉的血液灌流。但这种代偿方式有限,且不经济。当心率过快时(成年人大于 180 次 /min ),因心肌耗氧量增加、舒张期缩短及心脏充盈不足, CO 反而减少。临床上可用心率加快的程度作为判定心力衰竭严重程度的一项指标。  心率加快主要是由交感神经兴奋和儿茶酚胺分泌增加引起的。其机制为: ① 心衰时 CO 减少,动脉血压降低,对压力感受器刺激减弱,引起心率增快;②由于 CO 减少,使右心房和腔静脉压力升高,刺激压力或容量感受器,反射性地儿茶酚胺分泌增加,通过心肌细胞膜 β 和 / 或 α 受体,使心率加快,心肌收缩性增强。②缺氧刺激主动脉体和颈动脉体化学感受器,使呼吸中枢兴奋,呼吸加深加快,反射性地引起心率加快。  (二)、心泵功能的自身调节  1.通过心泵功能的自身调节-Staring 机制(异常调节)使搏出量增加  根据 Frank-Staring 定律,心肌收缩力和心搏出量在一定范围内随心肌纤维粗、细和肌丝相互重叠状态而定。当肌节小于 2.2um 时,随着肌节长度的增加,心肌收缩力逐渐增强,达到 2.2um 时,粗、细肌丝处于最佳重叠状态,有效横桥数目最多,收缩力最大,这个肌节长度为最适长度。正常情况下,心室舒张末期压力约为 0~1.33kPa ( 0~10mmHg ),此时肌节长度为 1.7~2.1um 之间。当心室舒张末压力达到 1.6~2.0 kPa ( 12~15mmHg ),肌节长度增加到 2.0~2.2um ,此时心肌收缩力较大,搏出量增多。 这种由心肌纤维初长度改变所引起的心输出量变化的自身调节称为异常调节。此种由容量加大并伴有心肌收缩力增强的心脏扩张也称为紧张源性扩张。 当心室舒张期末压力大于 2.4kPa ( 18mmHg )时,肌节长度超过最适长度,心肌收缩力反而下降,心搏出量减少。  2.通过心肌收缩力增强(等长调节)使搏出量增加  心肌收缩力是指心脏不依赖于前、后负荷而改变其力学活动的一种内在特性。心肌收缩力受兴奋 - 收缩耦联过程中各个环节的影响。当心肌收缩力下降,心搏出量减少时,交感神经兴奋,从而使血中儿茶酚胺浓度增加,通过激活β- 肾上腺素受体,增加胞浆中 cAMP 浓度,激活蛋白激酶 A ( protein kinase, PKA ),使肌膜钙通道蛋白磷酸化,导致心肌兴奋后胞浆 Ca2+ 浓度升高速率及幅度增加而发挥正性变力作用。 PKA 还可:①使受磷蛋白( phospholamban, PLB )磷酸化,使它对肌浆网钙泵的抑制作用减弱,肌浆网摄取 Ca2+ 能力增强;②使肌钙蛋白抑制亚单位( TnI )磷酸化,导致肌钙蛋白钙结合亚单位( TnC )与 Ca2+ 亲和力降低,使 Ca2+ 可以迅速从与肌钙蛋白结合的状态下解离出来,有利于心室的充盈。  (三)心肌改建  1.心肌肥大  心肌肥大( myocardial hypertrophy )是指心肌对各种原因导致的血液动力学超负荷作出的适应性反应。从细胞分子生物学角度来看,心肌肥大涉及基因表达的特异性变化和细胞表型的变化。一定程度的心肌肥大具有代偿意义,过度的心肌肥大是失代偿的表现。  (1) 心肌肥大类型:根据心室舒张末期容量及心室厚度的变化,可以将心肌肥大分为两种类型:离心性肥大( eccentric hypertrophy )和向心性肥大( concentric hypertrophy )。离心性肥大是指心脏重量增加,心室腔扩大,室壁稍厚,而室壁厚度与室腔直径的比值等于或小于正常,多由心脏长期容量负荷过度,使心室舒张末容量增加,室壁应力增加,肌节呈串联性增生所致。向心性肥大是指心脏重量增加,室壁增厚,心腔容积稍大或正常,而室壁厚度与室腔直径之比大于正常,多由心脏长期压力负荷过度,使收缩期室壁应力增加,肌节呈并联性增生所致。  (2) 代偿意义:在心肌肥大的早期,由于心肌细胞肥厚性生长和非心肌细胞增生性生长多呈比例均质性变化,显示心脏适应性肥大,具有代偿意义;在心肌肥大晚期,两者出现不呈比例非均质性生长,显示心脏非适应性肥大或病理性肥大,心脏由代偿转为失代偿,以至心力衰竭。  (3)心脏代偿的主要表现:①心脏泵血功能加强:由于心肌总量增加,心肌的总收缩力加强,心脏的泵血功能加强;②心肌的耗氧量降低:依据 Laplace 定律, S = pr/2h ( s =室壁应力、 p =压力、 r =心室半径、 h =室壁厚度),心肌肥大,室壁厚度增加,可降低室壁张力而减少心肌的耗氧量;③由于 α-MHC 向 β-MHC 转化,能量利用率提高。  2.细胞表型的改变  表型( phenotype )改变即由于所合成蛋白质种类的变化所导致的心肌细胞“质”的改变,主要是通过心肌蛋白质同工型家族转换实现的。 例如:在肥厚性心肌刺激因子所引起的心肌肥大中,通常只在胚胎期表达的基因( β-MHC )重新表达并合成胚胎期蛋白质;而另一些基因( α-MHC )表达受到限制,从而发生同工型转换而使细胞表型发生改变。除上述同工型转换属于正常基因表达外,心肌在分子水平上的改建,还可能与基因过度表达、缺失、突变等因素有关。  3.心肌间质网络重建  在循环和局部的肾素 - 血管紧张素 - 醛固酮系统( renin-angiotensin-aldosterone system, RAAS )、去甲肾上腺素、细胞因子、机械牵张等作用下,使非心肌细胞增殖,尤其是成纤维细胞:①改建早期,Ⅲ型胶原常明显增多,这对心力衰竭尤其是心肌肥大早期的代偿具有重要意义。②改建后期,常以Ⅰ型胶原为主,由于它的伸展性和回缩性较小,所以,它的增多使心肌的僵硬度增加而影响心室的舒张功能。  二、神经 - 内分泌系统的代偿性激活  1、交感 - 肾上腺髓质系统被激活  2、肾素 - 血管紧张素 - 醛固酮系统激活  3、心房肽的作用  4、抗利尿激素的作用  三、心脏以外的代偿  心力衰竭时,除上述心脏本身及神经 - 体液代偿机制外,为适应心力衰竭时血液动力学的变化,机体还通过以下环节进行代偿和适应性变化。  1、血容量增加  2、全身血流重分布  3、氧和血红蛋白解离曲线右移  4、骨髓造血功能加强

简述心衰早期机体有哪些代偿机制

2,简述心衰早期机体有哪些代偿机制

从心功能不全的早期代偿到晚期的心力衰竭,是机体从完全代偿、不完全代偿到失代偿的连续的动态发展过程。就急性心力衰竭患者而言,由于机体的代偿反应不能及时动员,患者常在短时间内即可表现出严重的心力衰竭状态。反之,慢性心力衰竭发生时,机体可通过心脏代偿和心外代偿使这个过程的持续时间长达数年甚至更久,以致患者在相当长的时间内维持相对正常的生命活动。这表明,通过代偿,心输出量尚可满足机体的代谢需要,患者未表现出心力衰竭的表征,此为完全代偿(complete compensation);若心输出量仅能满足机体在静息状态下的代谢需要,患者有轻度的心力衰竭表现,称为不完全代偿(incomplete compensation);严重时,心输出量甚至不能满足机体在静息状态下的代谢需要,患者有明显的心力衰竭症状和体证,此为失代偿(decompensation),是心功能不全的最后阶段。 代偿反应是机体在心力衰竭发生时防止 co 进一步减少的必要措施,且代偿反应的强度与心力衰竭是否发生、发生速度以及严重程度密切相关。如 co 尚可满足机体的代谢需要,患者未出现心力衰竭的表现,此为完全代偿( complete compensation ); 若心输出量仅能满足机体在静息状态下的代谢需要,患者有轻度心力衰竭表现,称为不完全代偿 ( incomplete compensation ) ; 严重时, co 甚至不能满足机体在静息状态下的代谢需要,患者有明显心力衰竭的症状和体征,此为失代偿( decompensation ) 。 一、心脏本身的代偿 (一)、心率加快 这是一种见效迅速的代偿。由于心输出量=每搏输出量 × 心率,所以在一定的范围内,在每搏输出量( stroke volume )不变的情况下,心率( heart rate )的增快可提高 co ,并可通过提高舒张压,促进冠脉的血液灌流。但这种代偿方式有限,且不经济。当心率过快时(成年人大于 180 次 /min ),因心肌耗氧量增加、舒张期缩短及心脏充盈不足, co 反而减少。临床上可用心率加快的程度作为判定心力衰竭严重程度的一项指标。 心率加快主要是由交感神经兴奋和儿茶酚胺分泌增加引起的。其机制为: ① 心衰时 co 减少,动脉血压降低,对压力感受器刺激减弱,引起心率增快;②由于 co 减少,使右心房和腔静脉压力升高,刺激压力或容量感受器,反射性地儿茶酚胺分泌增加,通过心肌细胞膜 β 和 / 或 α 受体,使心率加快,心肌收缩性增强。②缺氧刺激主动脉体和颈动脉体化学感受器,使呼吸中枢兴奋,呼吸加深加快,反射性地引起心率加快。 (二)、心泵功能的自身调节 1.通过心泵功能的自身调节-staring 机制(异常调节)使搏出量增加 根据 frank-staring 定律,心肌收缩力和心搏出量在一定范围内随心肌纤维粗、细和肌丝相互重叠状态而定。当肌节小于 2.2um 时,随着肌节长度的增加,心肌收缩力逐渐增强,达到 2.2um 时,粗、细肌丝处于最佳重叠状态,有效横桥数目最多,收缩力最大,这个肌节长度为最适长度。正常情况下,心室舒张末期压力约为 0~1.33kpa ( 0~10mmhg ),此时肌节长度为 1.7~2.1um 之间。当心室舒张末压力达到 1.6~2.0 kpa ( 12~15mmhg ),肌节长度增加到 2.0~2.2um ,此时心肌收缩力较大,搏出量增多。 这种由心肌纤维初长度改变所引起的心输出量变化的自身调节称为异常调节。此种由容量加大并伴有心肌收缩力增强的心脏扩张也称为紧张源性扩张。 当心室舒张期末压力大于 2.4kpa ( 18mmhg )时,肌节长度超过最适长度,心肌收缩力反而下降,心搏出量减少。 2.通过心肌收缩力增强(等长调节)使搏出量增加 心肌收缩力是指心脏不依赖于前、后负荷而改变其力学活动的一种内在特性。心肌收缩力受兴奋 - 收缩耦联过程中各个环节的影响。当心肌收缩力下降,心搏出量减少时,交感神经兴奋,从而使血中儿茶酚胺浓度增加,通过激活β- 肾上腺素受体,增加胞浆中 camp 浓度,激活蛋白激酶 a ( protein kinase, pka ),使肌膜钙通道蛋白磷酸化,导致心肌兴奋后胞浆 ca2+ 浓度升高速率及幅度增加而发挥正性变力作用。 pka 还可:①使受磷蛋白( phospholamban, plb )磷酸化,使它对肌浆网钙泵的抑制作用减弱,肌浆网摄取 ca2+ 能力增强;②使肌钙蛋白抑制亚单位( tni )磷酸化,导致肌钙蛋白钙结合亚单位( tnc )与 ca2+ 亲和力降低,使 ca2+ 可以迅速从与肌钙蛋白结合的状态下解离出来,有利于心室的充盈。 (三)心肌改建 1.心肌肥大 心肌肥大( myocardial hypertrophy )是指心肌对各种原因导致的血液动力学超负荷作出的适应性反应。从细胞分子生物学角度来看,心肌肥大涉及基因表达的特异性变化和细胞表型的变化。一定程度的心肌肥大具有代偿意义,过度的心肌肥大是失代偿的表现。 (1) 心肌肥大类型:根据心室舒张末期容量及心室厚度的变化,可以将心肌肥大分为两种类型:离心性肥大( eccentric hypertrophy )和向心性肥大( concentric hypertrophy )。离心性肥大是指心脏重量增加,心室腔扩大,室壁稍厚,而室壁厚度与室腔直径的比值等于或小于正常,多由心脏长期容量负荷过度,使心室舒张末容量增加,室壁应力增加,肌节呈串联性增生所致。向心性肥大是指心脏重量增加,室壁增厚,心腔容积稍大或正常,而室壁厚度与室腔直径之比大于正常,多由心脏长期压力负荷过度,使收缩期室壁应力增加,肌节呈并联性增生所致。 (2) 代偿意义:在心肌肥大的早期,由于心肌细胞肥厚性生长和非心肌细胞增生性生长多呈比例均质性变化,显示心脏适应性肥大,具有代偿意义;在心肌肥大晚期,两者出现不呈比例非均质性生长,显示心脏非适应性肥大或病理性肥大,心脏由代偿转为失代偿,以至心力衰竭。 (3)心脏代偿的主要表现:①心脏泵血功能加强:由于心肌总量增加,心肌的总收缩力加强,心脏的泵血功能加强;②心肌的耗氧量降低:依据 laplace 定律, s = pr/2h ( s =室壁应力、 p =压力、 r =心室半径、 h =室壁厚度),心肌肥大,室壁厚度增加,可降低室壁张力而减少心肌的耗氧量;③由于 α-mhc 向 β-mhc 转化,能量利用率提高。 2.细胞表型的改变 表型( phenotype )改变即由于所合成蛋白质种类的变化所导致的心肌细胞“质”的改变,主要是通过心肌蛋白质同工型家族转换实现的。 例如:在肥厚性心肌刺激因子所引起的心肌肥大中,通常只在胚胎期表达的基因( β-mhc )重新表达并合成胚胎期蛋白质;而另一些基因( α-mhc )表达受到限制,从而发生同工型转换而使细胞表型发生改变。除上述同工型转换属于正常基因表达外,心肌在分子水平上的改建,还可能与基因过度表达、缺失、突变等因素有关。 3.心肌间质网络重建 在循环和局部的肾素 - 血管紧张素 - 醛固酮系统( renin-angiotensin-aldosterone system, raas )、去甲肾上腺素、细胞因子、机械牵张等作用下,使非心肌细胞增殖,尤其是成纤维细胞:①改建早期,ⅲ型胶原常明显增多,这对心力衰竭尤其是心肌肥大早期的代偿具有重要意义。②改建后期,常以ⅰ型胶原为主,由于它的伸展性和回缩性较小,所以,它的增多使心肌的僵硬度增加而影响心室的舒张功能。 二、神经 - 内分泌系统的代偿性激活 1、交感 - 肾上腺髓质系统被激活 2、肾素 - 血管紧张素 - 醛固酮系统激活 3、心房肽的作用 4、抗利尿激素的作用 三、心脏以外的代偿 心力衰竭时,除上述心脏本身及神经 - 体液代偿机制外,为适应心力衰竭时血液动力学的变化,机体还通过以下环节进行代偿和适应性变化。 1、血容量增加 2、全身血流重分布 3、氧和血红蛋白解离曲线右移 4、骨髓造血功能加强
  心力衰竭时,除上述心脏本身及神经 - 体液代偿机制外,为适应心力衰竭时血液动力学的变化,机体还通过以下环节进行代偿和适应性变化。  1、血容量增加  2、全身血流重分布  3、氧和血红蛋白解离曲线右移  4、骨髓造血功能加强  从心功能不全的早期代偿到晚期的心力衰竭,是机体从完全代偿、不完全代偿到失代偿的连续的动态发展过程。就急性心力衰竭患者而言,由于机体的代偿反应不能及时动员,患者常在短时间内即可表现出严重的心力衰竭状态。反之,慢性心力衰竭发生时,机体可通过心脏代偿和心外代偿使这个过程的持续时间长达数年甚至更久,以致患者在相当长的时间内维持相对正常的生命活动。这表明,通过代偿,心输出量尚可满足机体的代谢需要,患者未表现出心力衰竭的表征,此为完全代偿(complete compensation);若心输出量仅能满足机体在静息状态下的代谢需要,患者有轻度的心力衰竭表现,称为不完全代偿(incomplete compensation);严重时,心输出量甚至不能满足机体在静息状态下的代谢需要,患者有明显的心力衰竭症状和体证,此为失代偿(decompensation),是心功能不全的最后阶段。

简述心衰早期机体有哪些代偿机制

3,含油污泥分离处理如何纳税

根据《国家税务总局关于印发〈营业税税目注释〉(试行稿)的通知》(国税发[1993]149号文)第二条第五款规定:“其他工程作业,是指上列工程作业以外的各种工程作业,如代办电信工程、水利工程、道路修建、疏浚、钻井(打井)、拆除建筑物或构筑物、平整土地、搭脚手架、爆破等工程作业。”  将含油污泥进行分离应当属于营业税建筑业税目,应当申报缴纳营业税。  国家税务总局2011/01/14
含油污泥来源与处理方法综述 作者:姜勇 赵朝成 赵东风 前言 含油污泥是在石油开采、运输、炼制及含油污水处理过程中产生的含油固体废物。污泥中一般含油率在10~50%,含水率在40~90%,我国石油化学行业中,平均每年产生80万t罐底泥、池底泥[1],胜利油田每年产生含油污泥在10万吨以上,大港油田每年产生含油污泥约15万吨,河南油田每年产生5×104m3含油污泥[2]。含油污泥中含有大量的苯系物、酚类、蒽、芘等有恶臭的有毒物质[3],含油污泥若不加以处理,不仅污染环境,而且造成资源的浪费。含油污泥的处理一直是困扰油田的一大难题。1.含油污泥来源 含油污泥的来源主要有以下几种途径:1.1 原油开采产生含油污泥 原油开采过程中产生的含油污泥主要来源于地面处理系统,采油污水处理过程中产生的含油污泥,再加上污水净化处理中投加的净水剂形成的絮体、设备及管道腐蚀产物和垢物、细菌(尸体)等组成了含油污泥。此种含油污泥一般具有含油量高、粘度大、颗粒细、脱水难等特点,它不仅影响外输原油质量,还导致注水水质和外排污水难以达标[4]。1.2 油田集输过程产生含油污泥 胜利油田含油污泥的主要来源于接转站、联合站的油罐、沉降罐、污水罐、隔油池底泥、炼厂含油水处理设施、轻烃加工厂、天然气净化装置清除出来的油沙、油泥,钻井、作业、管线穿孔而产生的落地原油及含油污泥[5]。油品储罐在储存油品时,油品中的少量机械杂质、沙粒、泥土、重金属盐类以及石蜡和沥青质等重油性组分沉积在油罐底部,形成罐底油泥。中原油田污泥产生主要是一次沉降罐、二次沉降罐、洗井水回收罐的排污。含油污泥本身成分复杂,含有大量的老化原油、蜡质、沥青质、胶体和固体悬浮物、细菌、盐类、酸性气体、腐蚀产物等,污水处理过程中还加入了大量的凝聚剂、缓蚀剂、阻垢剂、杀菌剂等水处理药剂[6]。 在3-6年的油罐定期清洗中,罐底含油污泥量约占罐容的1%左右。罐底含油污泥的特点是碳氢化合物(油)含量极高。据调查测试发现,油罐底泥中大约25%为水,5%的无机沉淀物如泥沙,70%左右为碳氢化合物,其中沥青质占7.8%,石蜡占6%,污泥灰分含量4.8%[3]。1.3 炼油厂污水处理场产生的含油污泥 炼油厂污水处理场的含油污泥主要来源于隔油池底泥、浮选池浮渣、原油罐底泥等,俗称“三泥”,这些含油污泥组成各异,通常含油率在10%~50%之间,含水率在40%~90%之间,同时伴有一定量的固体。2.含油污泥的危害 含油污泥体积庞大,若不加以处理直接排放,不但占用大量耕地,而且对周围土壤、水体、空气都将造成污染,伴有恶臭气体产生,而且对周围土壤、水体、空气都将造成污染,伴有恶臭气体产生,污泥含有大量的病原菌、寄生虫(卵)、铜、锌、铬、汞等重金属,盐类以及多氯联苯、二恶英、放射性核素等难降解的有毒有害物质。3.常用污泥的处理方法 含油污泥处理最终的目的是以减量化、资源化、无害化为原则。含油污泥常用的处理方法:溶剂萃取法、焚烧法、生物法、焦化法、含油污泥调剖、含油污泥综合利用等。3.1 含油污泥的脱水 含油污泥中的水有以下四种形态:自由水(free water)、间隙水(interstitial water)、附着水(vicinal water)[或表面水surface water]、化学结合水(chemical-bound water)。 常用含油污泥脱水方法及效果见表1[7]。 表1 常用含油污泥的脱水方法及效果脱水方法 脱水装置 脱水后含水率% 脱水后状态 浓缩脱水 重力、气浮、离心浓缩 95-97 近似糊状 自然干化法 自然干化场、晒沙场 70-80 泥饼状 机械脱水 真空过滤 真空转鼓、真空转盘 60-80 泥饼状 压力过滤 板框压滤机 45-80 泥饼状 滚压过滤 滚压带式压滤机 78-86 泥饼状 离心过滤 离心机 80~85 泥饼状 干燥法 10-40 粉状、粒状 焚烧法 0-10 灰状 3.2 含油污泥的调质 经重力沉降脱水后的黑色粘稠含油污泥浓缩液,一般由水包油(o/w)、油包水(w/o)以及悬浮固体共同组成,属于多相的胶体体系,组成较为复杂。由于含油污泥颗粒表面吸附同种电荷,相互之间排斥,加之充分乳化,极难脱稳,使得油、水、泥渣分离比较困难。需要加入调质剂,使原油与固体颗粒分离、油滴聚合、原加入的化学药剂随固体杂质沉降,实现油、水、渣三相的完全分离。 李凡修对含油污泥调质-机械脱水处理工艺进行研究,该技术的关键在于对调质中所用的絮凝剂[8]、破乳剂、调节剂[9]种类与用量的选定、脱水机械类型的选择,以及脱水机械运行参数的确定。 据报道jan bock, sanjay r srivatsa, aldo corti等[10]人分别发明了通过含油污泥调质—机械脱水工艺回收油的有关专利技术:通过投加表面活性剂、稀释剂(葵烷等)、电解质(nacl溶液),或者破乳剂(阴离子或非离子)、润湿剂(可增加固体微粒表面和水的亲合力)和ph值调节剂等,并辅以加热减粘(最佳为50℃上)等调质手段,实现水—油—固三相分离。据有关资料,国内的辽宁省盘锦市辽河油田锦州采油厂获得一项含油污泥调质及回收原油的的专利技术[11]。 3.3 萃取法萃取法是利用“相似相溶”原理,选择一种合适的有机溶剂作萃取剂,将含油污泥中的原油回收利用的方法。黄戍生等利用多级分离萃取加一级热洗方法处理含油污泥[12],处理后污泥可达到农用污泥排放标准,化学药剂可循环使用。 超临界流体萃取技术,是一种新兴的含油污泥萃取技术,该技术正处于开发阶段。它将常温、常压下为气态的物质经过高压达到液态,并以之作为萃取剂,由于其巨大的溶解能力以及萃取剂易于回收循环使用。常用的超临界流萃取剂有甲烷、乙烯、乙烷、丙烷、二氧化碳等,这些物质的临界温度高、临界压力低,而且原料廉价易得,是良好的超临界萃取剂,且密度小,易于分离[13]。 目前,萃取法处理含油污泥还在试验开发阶段。萃取法的优点是处理含油污泥较彻底,能够将大部分石油类物质提取回收。但是由于萃取剂价格昂贵,而且在处理过程中有一定的损失,所以萃取法成本高,还没有实际应用于炼厂含油污泥处理。此项技术发展的关键是要开发出性能价格比高的萃取剂。 3.4 焚烧法 经过预先脱水浓缩预处理后的含油污泥,送至焚烧炉进行焚烧,温度800~850℃,经30min焚烧即可完毕,焚烧后的灰渣需进一步处理。 我国绝大多数炼油厂都建有污泥焚烧装置,采用焚烧处理最多的废物是污水处理场含油污泥,像长岭石油化工厂采用的顺流式回转焚烧炉,燕山石化公司炼油厂采用的流化床焚烧炉,在处理含油污泥方面都取得了良好的效果。目前国内焚烧炉类型主要有:方箱式、固定床式、流化床式、耙式炉或回转窑等炉型。 焚烧处理法优点是污泥经焚烧后,多种有害物几乎全部除去,减少了对环境的危害,废物减容效果好,处理比较安全,缺点是焚烧过程中产生了二次污染,浪费了宝贵资料。 3.5 生物法 含水污泥的生物处理技术主要有即地耕法、堆肥处理法和污泥生物反应器法。主要是利用微生物将含油污泥中的石油烃类降解为无害的土壤成份。据资料报导,地耕法可对土地和地下水产生一定的污染,故在一些发达已经停止使用。 堆肥法是将含油废弃物与适当的材料相混合并成堆放置,使天然微生物降解石油烃类的过程。堆肥法有四种堆制方法:堤形堆肥法、静态堆肥法、封闭堆肥法和容器堆肥法。堆肥法是一种有效的生物处理方法,含油污泥中烃类的半衰期约为2周。处理后的含油废弃物可填埋或施用农田。 生物反应器是一种将含油污泥稀释于营养介质中使之成为泥浆状的容器。由于生物反应器能人为地控制充氧、温度、营养物质等操作条件,烃类物质的生物降解速度较之其他生物处理过程更快。加入驯化过的高效烃类氧化菌,可加快烃类的生物降解。据文献报道,当固体负荷为5%时,生物降解半衰期为5天。生物反应器法适用于含油污泥,也适用于油污土壤及含油钻屑,含油废弃物经处理后,液体部分可排入处置井(坑、池)或另作他用(如回用);固体部分可用施用农田,生物反应器法也可用于石油工业废弃物的预处理以减少烃类含量,然后进行其他处理。 3.6 焦化法 含油污泥中含有一定数量的矿物油,其组成主要有烷烃、环烷烃、芳香烃、烯烃、胶质及沥青质等。焦化法处理含油污泥是利用高温条件下烃类的热裂解和热缩合反应产生液相油品、不凝气和焦碳产品。 赵东风等[14]利用平均含油率为69.46%,含水率为4.71%的含油污泥进行焦化反应,反应时间为60min,反应温度为490℃,反应压力为常压。在此条件下,液相产品的收率为88.23%,产品主要为汽油、柴油和蜡油。 3.7 调剖技术 利用采出水中的含油污泥与地层有良好配伍性,以含油污泥为基本原料,采用化学处理方法,加入适量的添加剂,悬浮其中的固体颗粒、延长悬浮时间、增加注入深度,有效地提高封堵强度,并使油组分分散均匀,形成均一、稳定的乳状液。由含油污泥配成乳化悬浮液调剖剂,应用于油田注水井调剖,在地层到达一定深度后,受地层水冲释及地层岩石的吸附作用,乳化悬浮体系分解,其中的泥质吸附胶沥质和蜡质,并通过它们粘联聚集形成较大粒径的“团粒结构”,沉降在大孔道中,使大孔道通径变小,封堵高渗透层带,增加了注入水渗流阻力,迫使注入水改变渗流方向,提高了注入水波及体积。通过优化施工工艺,可使含油污泥只封堵住高渗透地带,而不污染中、低渗透层。处理后的含油污泥作为调剖剂需达到的技术指标为:含油污泥粘度低(≤0.3pa·s),可泵性好;加入悬浮剂后含油污泥悬浮性能好,沉降时间大于3h。 河南油田在双河油田437块ⅱ4-6层系进行了含油污泥调剖试验取得了较好的效果[15、16]。胜利油田桩西油田进行含油污泥调剖试验也取得较好效果[17]。 3.8 其它方法 除了以上含油污泥处理方法外,还有地耕法、含油污泥固化法、化学破乳法、固液分离法[18]土地填埋技术,含油污泥的综合利用一般是利用含油污泥铺路、制砖、制作蜂窝煤等。国外还有含油污泥低温热解技术,以及采用溶剂和低频声波分离油泥的方法[19]等。 4.各种处理方法比较 ①简单处理:含油污泥直接填埋或固化后填埋都具有简单易行的特点。含油污泥直接填埋是目前多数国内油田采用的主要含油污泥处置方法,但这种既方法浪费了其中的宝贵能源,还有可能导致环境污染。其中,固化后填埋的方法可降低环境危害,但多数不能满足现行的环保要求。 ②物理化学处理:各类物理化学处理方法多以回收原油为目的,因此主要适用于含油量较高的含油污泥,处理过程通常需要加入化学药剂,需要专门的处理设施,处理过程复杂,成本较高。原油价格居高不下和含油污泥排放征收较高排污费,使这一方法仍有诱人的前景。该方法的缺点是,油回收不彻底,存在废水和废渣二次污染物问题,仍需考虑进一步处理或综合利用。另外,油田含油污泥产生面广,多是断续产生,不同来源的含油污泥性质各异,限制了该处理方法在油田的全面使用和推广。 ③生物处理技术:由于生物处理法具有节约能源、投资少、运行费用低等优点,目前受到国内外环保产业界人士普遍关注和重视。通过生物处理技术实现含油污泥的固液分离和油的去除,剩余残渣达到污泥排放标准。优点是不需加入化学药剂,消耗能源较少,绿色环保,但土地耕作法和堆肥法需大面积土地,生物反应器法仍有废渣排放,且处理时间长,操作复杂。 ④焚烧法:焚烧必须在专门建立的焚烧炉中进行,可比较彻底地消除含油污泥中的有害有机物,如不考虑燃烧热能的综合利用,会造成能源浪费。 ⑤作燃料:作燃料是利用含油污泥中所含能源的一种综合利用方式,但不能提取其中的原油,在利用这种方法时应从经济和环境两个方面进行综合考虑。含油污泥几种主要处理方法优缺点列于表2中。 表2 含油污泥主要处理方法优缺点比较序号 处理方法 适用范围 优点 缺点 1 简单处置 各类含油污泥 简单易行 污染环境,不能回收原油 2 物理化学处理 含油量在5-10%以上的含油污泥 回收原油,综合利用 需处理装置,需加入化学药剂,仍有污水、废渣排放,处理费用较高 3 生物处理 各类含油污泥 节省能源,无需化学药剂 处理周期长,不能回收原油 4 焚烧处理 含油量在5-10%以下的含油污泥及含有害有机物的污泥 有害有机物处理彻底, 需焚烧装置,通常需加入助燃燃料,有废气排放,不能回收原油 5 作燃料、制砖 各类含油污泥 综合利用,较易实行 不能回收原油,有废气排放 5.结束语 含油污泥主要来源于油田开采、油气集输及污水处理场,含油污泥的处理技术也多种多样,每种方法都有各自的优缺点和适用范围,但由于含油污泥成份复杂,没有任何一种处理方法可以处理所有类型的含油污泥,对含油污泥进行分级处理以及对处理方法进行分级是今后研究的主要方向。

含油污泥分离处理如何纳税


文章TAG:手表  怎么  简述  心衰  aldo手表怎么调  
下一篇