gwa11001a3 怎么样,卡西欧gwa11001a3怎么秒针会停走啊
来源:整理 编辑:手表大全 2024-04-11 16:08:09
本文目录一览
1,卡西欧gwa11001a3怎么秒针会停走啊

2,卡西欧男士手表 GWA11001A3 请问电波对时是什么概念
手表收到电波后会自动对时。精确到毫秒。是卡西欧的一项重大发明。

3,Flash脚本中thisSwapDepths11001表示什么意思啊
SwapDepths是交换深度函数。this代表“这个”影片剪辑,即当前影片剪辑。括号里面写的是要交换的深度值。白话翻译出来,就是将“this”指代的这个影片剪辑的深度设置为11001.深度越大,影片剪辑越上面。例如深度为2的影片剪辑将挡住深度为1的影片剪辑。
4,卡西欧ga11001a3下面表盘不显示数字
电池有问题。卡西欧ga11001a3下面表盘不显示数字是电池有问题,可以更换电池。卡西欧(Casio)是日本三大知名手表品牌之一,多年来以真正多功能的G-SHOCK手表著称于世。
5,有木有人知道卡西欧Gshock系列在日本的官方报价多少最好是精确
G-shock有很多种类从几十块的标准型到限定版2-3万块的什么样的都有没有型号的话,不可能报价。这个,你问 卡西欧 专卖店的人,或者让那里的人设置好就行了, 顺便告诉你 adjust 调节 start-stop停启系统 mode 种类 reset 复位
6,卡西欧罗盘温度计ga1000系列防水运动男表ga11001a3好吗
可以的。 卡西欧GA-110-1A这款手表可以带着游泳,它的防水深度为200米。 GA-110是以层次感的款式,并配备1/1000秒的秒表计速功能以及防磁功能。 GA-110的部分属性: .卡西欧石英机芯 .防水200米 .耐冲击构造 .抗磁 .自动LED照明(可选择照明时间长度) .橡胶表带 .世界时间
7,二进制八进制十进制十六进制数字如何转换本人急这方面
1. 十 -----> 二 (25.625)(十) 整数部分: 25/2=12......1 12/2=6 ......0 6/2=3 ......0 3/2=1 ......1 1/2=0 ......1 然后我们将余数按从下往上的顺序书写就是:11001,那么这个11001就是十进制25的二进制形式 小数部分: 0.625*2=1.25 0.25 *2=0.5 0.5 *2=1.0 然后我们将整数部分按从上往下的顺序书写就是:101,那么这个101就是十进制0.625的二进制形式 所以:(25.625)(十)=(11001.101)(二) 2. 二 ----> 十 (11001.101)(二) 整数部分: 下面的出现的2(x)表示的是2的x次方的意思 1*2(4)+1*2(3)+0*2(2)+0*2(1)+1*2(0)=25 小数部分: 1*2(-1)+0*2(-2)+1*2(-3)=0.625 所以:(11001.101)(二)=(25.625)(十) 3. 十 ----> 八 (25.625)(十) 整数部分: 25/8=3......1 3/8 =0......3 然后我们将余数按从下往上的顺序书写就是:31,那么这个31就是十进制25的八进制形式 小数部分: 0.625*8=5 然后我们将整数部分按从上往下的顺序书写就是:5,那么这个5就是十进制0.625的八进制形式 所以:(25.625)(十)=(31.5)(八) 4. 八 ----> 十 (31.5)(八) 整数部分: 3*8(1)+1*8(0)=25 小数部分: 5*8(-1)=0.625 所以(31.5)(八)=(25.625)(十) 5. 十 ----> 十六 (25.625)(十) 整数部分: 25/16=1......9 1/16 =0......1 然后我们将余数按从下往上的顺序书写就是:19,那么这个19就是十进制25的十六进制形式 小数部分: 0.625*16=10(即十六进制的A或a) 然后我们将整数部分按从上往下的顺序书写就是:A,那么这个A就是十进制0.625的十六进制形式 所以:(25.625)(十)=(19.A)(十六) 6. 十六----> 十 (19.A)(十六) 整数部分: 1*16(1)+9*16(0)=25 小数部分: 10*16(-1)=0.625 所以(19.A)(十六)=(25.625)(十) 如何将带小数的二进制与八进制、十六进制数之间的转化问题 我们以(11001.101)(二)为例讲解一下进制之间的转化问题 说明:小数部份的转化计算机二级是不考的,有兴趣的人可以看一看 1. 二 ----> 八 (11001.101)(二) 整数部分: 从后往前每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有: 001=1 011=3 然后我们将结果按从下往上的顺序书写就是:31,那么这个31就是二进制11001的八进制形式 小数部分: 从前往后每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有: 101=5 然后我们将结果部分按从上往下的顺序书写就是:5,那么这个5就是二进制0.625的八进制形式 所以:(11001.101)(二)=(31.5)(八) 2. 八 ----> 二 (31.5)(八) 整数部分:从后往前每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有: 1---->1---->001 3---->11 然后我们将结果按从下往上的顺序书写就是:11001,那么这个11001就是八进制31的二进制形式 说明,关于十进制的转化方式我这里就不再说了,上一篇文章我已经讲解了! 小数部分:从前往后每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有: 5---->101 然后我们将结果按从下往上的顺序书写就是:101,那么这个101就是八进制5的二进制形式 所以:(31.5)(八)=(11001.101)(二) 3. 十六 ----> 二 (19.A)(十六) 整数部分:从后往前每位按十进制转换成四位二进制数,缺位处用0补充 则有: 9---->1001 1---->0001(相当于1) 则结果为00011001或者11001 小数部分:从前往后每位按十进制转换成四位二进制数,缺位处用0补充 则有: A(即10)---->1010 所以:(19.A)(十六)=(11001.1010)(二)=(11001.101)(二) 4. 二 ----> 十六 (11001.101)(二) 整数部分:从后往前每四位按十进制转化方式转化为一位数,缺位处用0补充 则有: 1001---->9 0001---->1 则结果为19 小数部分:从前往后每四位按十进制转化方式转化为一位数,缺位处用0补充 则有: 1010---->10---->A 则结果为A 所以:(11001.101)(二)=(19.A)(十六) 最近有些朋友提了这样的问题“0.8的十六进制是多少?” 我想在我的空间里已经有了详细的讲解,为什么他还要问这样的问题那 于是我就动手算了一下,发现0.8、0.6、0.2... ...一些数字在进制之间的转化 过程中确实存在麻烦。 就比如“0.8的十六进制”吧! 无论你怎么乘以16,它的余数总也乘不尽,总是余8 这可怎么办啊,我也没折了 第二天,我请教了我的老师才知道,原来这么简单啊! 具体方法如下: 0.8*16=12.8 0.8*16=12.8 . . . . . 取每一个结果的整数部分为12既十六进制的C 如果题中要求精确到小数点后3位那结果就是0.CCC 如果题中要求精确到小数点后4位那结果就是0.CCCC
8,二进制方面问题
1. 十 -----> 二 给你一个十进制,比如:6,如果将它转换成二进制数呢? 10进制数转换成二进制数,这是一个连续除2的过程: 把要转换的数,除以2,得到商和余数, 将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。 听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。 “把要转换的数,除以2,得到商和余数”。 那么: 十转二示意图要转换的数是6, 6 ÷ 2,得到商是3,余数是0。 “将商继续除以2,直到商为0……” 现在商是3,还不是0,所以继续除以2。 那就: 3 ÷ 2, 得到商是1,余数是1。 “将商继续除以2,直到商为0……” 现在商是1,还不是0,所以继续除以2。 那就: 1 ÷ 2, 得到商是0,余数是1 “将商继续除以2,直到商为0……最后将所有余数倒序排列” 好极!现在商已经是0。 我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了! 6转换成二进制,结果是110。 把上面的一段改成用表格来表示,则为: 被除数 计算过程 商 余数 6 6/2 3 0 3 3/2 1 1 1 1/2 0 1 (在计算机中,÷用 / 来表示) 2. 二 ----> 十 二进制数转换为十进制数 二进制数第0位的权值是2的0次方,第1位的权值是2的1次方…… 所以,设有一个二进制数:0110 0100,转换为10进制为: 下面是竖式: 0110 0100 换算成 十进制 " ^ " 为次方 第0位 0 * 2^0 = 0 第1位 0 * 2^1 = 0 第2位 1 * 2^2 = 4 第3位 0 * 2^3 = 0 第4位 0 * 2^4 = 0 第5位 1 * 2^5 = 32 第6位 1 * 2^6 = 64 第7位 0 * 2^7 = 0 + --------------------------- 100 用横式计算为: 0 * 2 ^ 0 + 0 * 2 ^ 1 + 1 * 2 ^ 2 + 1 * 2 ^ 3 + 0 * 2 ^ 4 + 1 * 2 ^ 5 + 1 * 2 ^ 6 + 0 * 2 ^ 7 = 100 0乘以多少都是0,所以我们也可以直接跳过值为0的位: 1 * 2 ^ 2 + 1 * 2 ^ 3 + 1 * 2 ^ 5 + 1 * 2 ^ 6 = 100 3. 十 ----> 八 10进制数转换成8进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成8。 来看一个例子,如何将十进制数120转换成八进制数。 用表格表示: 被除数 计算过程 商 余数 120 120/8 15 0 15 15/8 1 7 1 1/8 0 1 120转换为8进制,结果为:170。 4. 八 ----> 十 八进制就是逢8进1。 八进制数采用 0~7这八数来表达一个数。 八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方…… 所以,设有一个八进制数:1507,转换为十进制为: 用竖式表示: 1507换算成十进制。 第0位 7 * 8^0 = 7 第1位 0 * 8^1 = 0 第2位 5 * 8^2 = 320 第3位 1 * 8^3 = 512 -------------------------- 839 同样,我们也可以用横式直接计算: 7 * 8^0 + 0 * 8^1 + 5 * 8^2 + 1 * 8^3 = 839 结果是,八进制数 1507 转换成十进制数为 839 5. 十 ----> 十六 10进制数转换成16进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成16。 同样是120,转换成16进制则为: 被除数 计算过程 商 余数 120 120/16 7 8 7 7/16 0 7 120转换为16进制,结果为:78。 6. 十六----> 十 16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用a,b,c,d,e,f这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。 十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方…… 所以,在第n(n从0开始)位上,如果是是数 x (x 大于等于0,并且x小于等于 15,即:f)表示的大小为 x * 16的n次方。 假设有一个十六进数 2af5, 那么如何换算成10进制呢? 用竖式计算: 2af5换算成10进制: 第0位: 5 * 16^0 = 5 第1位: f * 16^1 = 240 第2位: a * 16^2 = 2560 第3位: 2 * 16^3 = 8192 + ------------------------------------- 10997 直接计算就是: 5 * 16^0 + f * 16^1 + a * 16^2 + 2 * 16^3 = 10997 (别忘了,在上面的计算中,a表示10,而f表示15) 现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。 假设有人问你,十进数 1234 为什么是 一千二百三十四?你尽可以给他这么一个算式: 1234 = 1 * 10^3 + 2 * 10^2 + 3 * 10^1 + 4 * 10^0 7. 二 ----> 八 (11001.101)(二) 整数部分: 从后往前每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有: 001=1 011=3 然后我们将结果按从下往上的顺序书写就是:31,那么这个31就是二进制11001的八进制形式 小数部分: 从前往后每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有: 101=5 然后我们将结果部分按从上往下的顺序书写就是:5,那么这个5就是二进制0.101的八进制形式 所以:(11001.101)(二)=(31.5)(八) 8. 八 ----> 二 (31.5)(八) 整数部分:从后往前每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有: 1---->1---->001 3---->11 然后我们将结果按从下往上的顺序书写就是:11001,那么这个11001就是八进制31的二进制形式 说明,关于十进制的转化方式我这里就不再说了,上一篇文章我已经讲解了! 小数部分:从前往后每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有: 5---->101 然后我们将结果按从下往上的顺序书写就是:101,那么这个101就是八进制5的二进制形式 所以:(31.5)(八)=(11001.101)(二) 9. 十六 ----> 二 ;二 ----> 十六 二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个c,c++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。 我们也一样,只要学完这一小节,就能做到。 首先我们来看一个二进制数:1111,它是多少呢? 你可能还要这样计算:1 * 2^0 + 1 * 2^1 + 1 * 2^2 + 1 * 2^3 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。 然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为2^3 = 8,然后依次是 2^2 = 4,2^1=2, 2^0 = 1。 记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。 下面列出四位二进制数 xxxx 所有可能的值(中间略过部分) 仅4位的2进制数 快速计算方法 十进制值 十六进值 1111 = 8 + 4 + 2 + 1 = 15 f 1110 = 8 + 4 + 2 + 0 = 14 e 1101 = 8 + 4 + 0 + 1 = 13 d 1100 = 8 + 4 + 0 + 0 = 12 c 1011 = 8 + 4 + 0 + 1 = 11 b 1010 = 8 + 0 + 2 + 0 = 10 a 1001 = 8 + 0 + 0 + 1 = 9 9 .... 0001 = 0 + 0 + 0 + 1 = 1 1 0000 = 0 + 0 + 0 + 0 = 0 0 二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。 如(上行为二制数,下面为对应的十六进制): 1111 1101 , 1010 0101 , 1001 1011 f d , a 5 , 9 b 反过来,当我们看到 fd时,如何迅速将它转换为二进制数呢? 先转换f: 看到f,我们需知道它是15(可能你还不熟悉a~f这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。 接着转换 d: 看到d,知道它是13,13如何用8421凑呢?应该是:8 + 4 + 1,即:1101。 所以,fd转换为二进制数,为: 1111 1011 由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。 比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数: 被除数 计算过程 商 余数 1234 1234/16 77 2 77 77/16 4 13 (d) 4 4/16 0 4 结果16进制为: 0x4d2 然后我们可直接写出0x4d2的二进制形式: 0100 1101 0010。 其中对映关系为: 0100 -- 4 1101 -- d 0010 -- 2 同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。 下面举例一个int类型的二进制数: 01101101 11100101 10101111 00011011 我们按四位一组转换为16进制: 6d e5 af 1b在计算机中,表示7种状态至少需要______3_____位二进制码,表示8种状态至少需要______3__位二进制码,表示9种状态至少需要_____4______位二进制码。 13. 在计算机中,无符号整数7至少需要___4___位二进制码,无符号整数8至少需要____4____位二进制码;无符号整数15至少需要______8__位二进制码,无符号整数16至少需要___8___位二进制码。 14. 在计算机科学中,___asc__________是国际通用的信息交换代码,由一个字节组成。
文章TAG:
怎么 怎么样 卡西欧 秒针 gwa11001a3 卡西欧gwa11001a3怎么秒针会停走啊